CE 528 Cloud Computing

Lecture 4. Google File System
Spring 2025

Prof. Yigong Hu

BOSTON
UNIVERSITY

Slides courtesy of Chang Lou

Administrivia
Next Monday is the lab day

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

SOSP 2003

Why Are We Reading This Paper?

Distributed storage is a key abstraction

GFS paper touches on many themes of this course
* parallel performance, fault tolerance, replication,

Consistency
* good systems paper -- details from apps all the way to network

successful real-world design

How to Read a Research Paper

What are the motivations for this work?

What is the proposed solution?

What is the work's evaluation of the proposed solution?

What is your analysis of the identified problem, idea and evaluation?
What are the contributions?

What are future directions for this research?

What questions are you left with?

What is your take-away message from this paper?

Motivation

Performance
Many servers
Fault tolerance
Replication

Better Consistency

Goal of GFS

Many Google services needed a big fast unified storage system
* Mapreduce, Youtube

Global (over a single data center)
* Allows sharing of data among applications

Automatic
* Forparallel performance
* TJoincrease space available
* recovery from failures

Assumptions of GFS

Just one data center per deployment
Internal Google applications/users

Workload (e.g., crawling -> indexing -> PR -> ...)
* Multiple clients
* Large streaming reads, Small random writes
 Concurrent appends to the same file

Aimed at sequential access to huge files: read or append
* |l.e.notalow-latency DB for smallitems
* High Throughput> Low Latency

What Are the Contribution of the Paper?

Not the basic ideas of distribution, sharding, fault-tolerance.
Huge scale.

Used in industry, real-world experience.

Successful use of weak consistency.

Successful use of single master.

GFS’s Architecture

File 1
Chunk 1

Chunk Server

File 1
Chunk 2

?
i
i
¢

File 2
Chunk 1

File 1
Chunk 2

Chunk Server

< Chunk Mappings _|

File 1
Chunk 1

Shadow !
Master

!
i
i
|

File 2
Chunk 2

File 1
Chunk 2

Chunk Server

File 2
Chunk 1

File 2
Chunk 2

redundant

10

Overall Architecture

User-level process running on commodity Linux machines

Files broken into chunks (typically 64 MB),

3x redundancy

Data transfers happen directly between clients and Chunk Servers
Single Master and master replicas

Division of Master Server and Chunk Servers

Chunk 1 A
File 1

Chunk Server Chunk 2 |
File 2

Chunk 1

File 1

Chunk 2 A
File 1
Chunk Server Chunk 1 o redundant
File 2

Chunk 2

= — . — . —p

File 1

Chunk 2 A
File 2
Chunk Server Chunk 1
I 4
File 2

Chunk 2

1.—.—.—._’

Master Node

Centralization for simplicity & global knowledge for chunk placement

Namespace and metadata management

Managing chunks
* Where they are (file<-chunks, replicas)
* Where to put new
* When to re-replicate (failure, load-balancing)
* When and what to delete (garbage collection)

Fault tolerance
* Shadow masters
* Monitoring infrastructure outside of GFS
* Periodic snapshots
* Mirrored operations log

12

Master Node

All Metadata is kept in Master’s memory - it’s fast!
A 64 MB chunk needs less than 64B metadata => for 640 TB less than 640MB

Master learns ChunkServer-to-chunk mapping from Chunk Servers when
* Master starts

* A Chunk Server joins the cluster

Master exchanges periodic heartbeat with Chunk Servers
* state monitoring & instructions

Operation log to keep file-to-chunk mapping persistent
* |sused for serialization of concurrent operations
* Replicated in master’s disk and on remote machines
* Respondto clientonly when log is flushed locally and remotely

13

Chunk Servers

64MB chunks as Linux files
* Reduce size of the master data structures
* Reduce client-master interaction
* Internal fragmentation => allocate space lazily

Fault tolerance
* Heart-beatto the master
* Something wrong => master inits replication

14

Basic Ops (Read, Write)

When Client Wants to Read A File?

1. C sends filename and offset to master M (if not cached)
* M has a filename -> array-of-chunk handle table and a chunk handle -> list-
of-chunk servers table

2. M finds chunk handle for that offset

3. M replies with chunk handle + list of chunk servers

4. C caches handle + chunk server list

5. C sends request to nearest chunk server chunk handle, offset

6. chunk server reads from chunk file on disk, returns to client

16

When Client Wants to Read a File

Clients only ask master where to find a file's chunks
 clients cache name ->chunk handle info
 coordinator does not handle data, so (hopefully) not heavily loaded

What about writes?

 Client knows which chunk servers hold replicas that must be updated.
* How should we manage updating of replicas of a chunk

17

What Would We Like for Consistency?

Goal: Distributed systems try to create an illusion that users are using
one single powerful machine

Suppose C1 and C2 write concurrently, and after the writes have
completed, C3 and C4 read. what can they see?

18

Bad Replication Design

* Client sends update to each replica chunk server

* Each chunk server applies the update to its copy

Client1

a4

Server1

\

Server2

19

Solution: Primary/Secondary Replication

For each chunk, desighate one server as "primary".

Clients send write requests just to the primary.
* The primary alone manages interactions with secondary servers.
* (Some designs send reads just to primary, some also to secondaries)

The primary chooses the order for all client writes.

* Tells the secondaries -- with sequence numbers -- so all replicas
* apply writes in the same order, even for concurrent client writes.

21

When Client Wants to Write

1. C asks M about file's chunk @ offset
2. M tells C the primary and secondaries
3. C sends data to all (just temporary...), waits for all replies (?)

4. C asks P to write
* P checks that lease (?) hasn't expired
P writes its own chunk file (a Linux file)

5. P tells each secondary to write
* (copytemporaryinto chunk file)

6. P waits for all secondaries to reply, or timeout
* secondary canreply "error" e.g. out of disk space

7. P tells C"ok" or "error"
e Cretries from startif error

22

write request

Control and Data Flow

Which chunk servers,
who holds lease?

'

Master

4 step 1
Client |
ACK/ 3
ERR push data to replicas
Secondary [«——
Replica A
1 6
L Primary)
~| Replica .
Secondary 0
ReplicaB |(=—

2

write request

5
Legend:

write request
— Control
m—) Data

23

GFS Consistency Guarantees

somewhat complex!

if primary tells client that a write succeeded,
* and no other client is writing the same part of the file,
* all readers will see the write.
* "defined”

if successful concurrent writes to the same part of a file,
* and they all succeed, all readers will see the same content,
* but maybe it will be a mix of the writes.
* "consistent"”
 E.g. C1 writes "ab", C2 writes "xy", everyone might see "xb".

If primary doesn't tell the client that the write succeeded,
* different readers may see different content, or none.
* "Inconsistent”

24

A Client Crashes While Writing?

Either it got as far as asking primary to write, or not.

27

A Secondary Crashes Just As The Primary Asks It to Write?

1. Primary may retry a few times, if secondary revives quickly
« with disk intact, it may execute the primary's request
« and all is well.

2. Primary gives up, and returns an error to the client.
 Client can retry -- but why would the write work the second
* time around?

3. Coordinator notices that a chunkserver is down.
* Periodically pings all chunk servers.
 Removes the failed chunkserver from all chunkhandle lists.
* Perhaps re-replicates, to maintain 3 replicas.
* Tells primary the new secondary list.

28

A Secondary Crashes Just As The Primary Asks It to Write?

Re-replication after a chunkserver failure may take a long time

* Since a chunkserver failure requires re-replication of all its chunks. 80 GB
disk, 10 MB/s network -> an hour or two for full copy.

 Sothe primary probably re-tries for a while,

* and the master lets the system operate with a missing

* chunkreplica, before declaring the chunkserver permanently dead.

* How long to wait before re-replicating?

* Too short: wasted copying work if chunkserver comes back to life. Too long:
more failures might destroy all copies of data.

29

What If a Primary Crashes?

The master must be able to desighate a new primary if the present
primary fails.

But the coordinator cannot distinguish "primary has failed” from
"primary is still alive but the network has a problem.”

What if the coordinator designhates a new primary while old one is
active?
* two active primaries!
e (C1 writestoP1, C2reads from P2, doesn't seen C1's write!
 called"split brain” -- a disaster

30

What If a Primary Crashes?

Solution: Lease

* Permission to act as primary for a given time (60 seconds).

* Primary promises to stop acting as primary before lease expires.
 Coordinator promises not to change primaries until after expiration.
 Separate lease per actively written chunk.

Leases help prevent split brain:
* Coordinator won't designate new primary until the currentone is
* guaranteed to have stopped acting as primary.

31

What If a Primary Crashes?

Remove that chunk server from all chunk handle lists.

For each chunk for which it was primary,
* wait for lease to expire,
* grant lease to another chunk server holding that chunk.

32

Wanna Play With GFS Yourself?

Try HDFS (an open-source clone inspired by GFS)!

Project Wiki Hadoop 1.2.1 Documentation

) Getting Started

) Guides

} MapReduce

~ HDFS
= HDFS Users
°
“ Permissions
o Quotas
. Synthetic Load

Generator

@ Offline Image Viewer
= HFTP
© WebHDFS REST API
= C API libhdfs

» Common

) Miscellaneous

Search the site with google] | Search]

Last Published: 05/18/2022 08:56:23

.\
|

HDFS Architecture Guide

=
=

Introduction
Assumptions and Goals

Hardware Failure

Streaming Data Access

Large Data Sets

Simple Coherency Model

“Moving Computation is Cheaper than Moving Data”

Portability Across Heterogeneous Hardware and Software Platforms
NameN nd DataNo
The File System Namespace
Data Replication

Replica Placement: The First Baby Steps
Replica Selection
Safemode
The Persistence of File System Metadata
The Communication Protocols
Robustness

Data Disk Failure, Heartbeats and Re-Replication
Cluster Rebalancing

Data Integrity.

Metadata Disk Failure

Qnanchnte

33

	Slide 1: Lecture 4: Google File System Spring 2025
	Slide 2: Administrivia
	Slide 3: The Google File System
	Slide 4: Why Are We Reading This Paper?
	Slide 5: How to Read a Research Paper
	Slide 6: Motivation
	Slide 7: Goal of GFS
	Slide 8: Assumptions of GFS
	Slide 9: What Are the Contribution of the Paper?
	Slide 10: GFS’s Architecture
	Slide 11: Overall Architecture
	Slide 12: Master Node
	Slide 13: Master Node
	Slide 14: Chunk Servers
	Slide 15: Basic Ops (Read, Write)
	Slide 16: When Client Wants to Read A File?
	Slide 17: When Client Wants to Read a File
	Slide 18: What Would We Like for Consistency?
	Slide 19: Bad Replication Design
	Slide 21: Solution: Primary/Secondary Replication
	Slide 22: When Client Wants to Write
	Slide 23: Control and Data Flow
	Slide 24: GFS Consistency Guarantees
	Slide 27: A Client Crashes While Writing?
	Slide 28: A Secondary Crashes Just As The Primary Asks It to Write?
	Slide 29: A Secondary Crashes Just As The Primary Asks It to Write?
	Slide 30: What If a Primary Crashes?
	Slide 31: What If a Primary Crashes?
	Slide 32: What If a Primary Crashes?
	Slide 33: Wanna Play With GFS Yourself?

